Skip to main content
\(\renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{ #1}}{\thechapter~ #1}} \renewcommand{\sectionmark}[1]{} \newcommand{\abs}[1]{\left|#1\right|} \renewcommand{\theenumi}{5.\arabic{enumi}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\norma}[1]{\left\|#1\right\|} \newcommand{\BM}[1]{\text{\boldmath$#1$}} \newcommand{\halmaz}[1]{\left\{\,#1\,\right\}} \newcommand{\halmazvonal}[2]{\left\{\,#1\mid #2\,\right\}} \newcommand{\halmazpont}[2]{\left\{\,#1:#2\,\right\}} \newcommand{\N}{\mathbb{N}} \newcommand{\len}{\norm} \newcommand{\var}[2][]{v_{#1}\left(#2\right)} \newcommand{\vari}[2]{v_{#1}\left(#2\right)} \newcommand{\size}[2][]{s_{#1}\left(#2\right)} \newcommand{\dep}[2][]{d_{#1}\left(#2\right)} \newcommand{\sizestar}[2][]{s_{#1}^*\left(#2\right)} \newcommand{\depstar}[2][]{d_{#1}^*\left(#2\right)} \renewcommand{\headrulewidth}{0pt} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section6.5Recurrence sequences

  1. Exercise 5.2.4 We use the notation as follows 1: the largest disk, 2: the second largest disk, 3: the second smallest disk, 4: the smallest disk. At the beginning there are 4 disks on peg \(A\text{,}\) it is denoted as \(\halmaz{1,2,3,4}\text{,}\) while peg \(B\) and peg \(C\) has no disks at all, so we write \(\halmaz{}\text{.}\)

    # move peg \(A\) peg \(B\) peg \(C\)
    0 \(\halmaz{ 1, 2, 3, 4 }\) \(\halmaz{}\) \(\halmaz{}\)
    1 \(\halmaz{ 1, 2, 3 }\) \(\halmaz{ 4 }\) \(\halmaz{}\)
    2 \(\halmaz{ 1, 2 }\) \(\halmaz{ 4 }\) \(\halmaz{ 3 }\)
    3 \(\halmaz{ 1, 2 }\) \(\halmaz{}\) \(\halmaz{ 3, 4 }\)
    4 \(\halmaz{ 1 }\) \(\halmaz{ 2 }\) \(\halmaz{ 3, 4 }\)
    5 \(\halmaz{ 1, 4 }\) \(\halmaz{ 2 }\) \(\halmaz{ 3 }\)
    6 \(\halmaz{ 1, 4 }\) \(\halmaz{ 2, 3 }\) \(\halmaz{}\)
    7 \(\halmaz{ 1 }\) \(\halmaz{ 2, 3, 4 }\) \(\halmaz{}\)
    8 \(\halmaz{}\) \(\halmaz{ 2, 3, 4 }\) \(\halmaz{ 1 }\)
    9 \(\halmaz{}\) \(\halmaz{ 2, 3 }\) \(\halmaz{ 1, 4 }\)
    10 \(\halmaz{ 3 }\) \(\halmaz{ 2 }\) \(\halmaz{ 1, 4 }\)
    11 \(\halmaz{ 3, 4 }\) \(\halmaz{ 2 }\) \(\halmaz{ 1 }\)
    12 \(\halmaz{ 3, 4 }\) \(\halmaz{ }\) \(\halmaz{ 1, 2 }\)
    13 \(\halmaz{ 3 }\) \(\halmaz{ 4 }\) \(\halmaz{ 1, 2 }\)
    14 \(\halmaz{ }\) \(\halmaz{ 4 }\) \(\halmaz{ 1, 2, 3 }\)
    15 \(\halmaz{ }\) \(\halmaz{ }\) \(\halmaz{ 1, 2, 3, 4 }\)

  2. Exercise 5.2.5 The idea is to determine geometric progressions satisfying the same recurrence relation as \(a_n\text{.}\) Let \(g_n\) be a geometric progression with the above mentioned property such that \(g_n=g_0r^n\) for some \(g_0\) and \(r\text{.}\) It follows that

    \begin{equation*} r^2=7r-10\Rightarrow r^2-7r+10=0\text{.} \end{equation*}

    Solving the quadratic equation yields that \(r=2\) or 5. We obtained two appropriate progressions and we know that linear combinations of these progressions satisfy exactly the same recurrence. Define \(W_n\) as follows

    \begin{equation*} W_n=s\cdot 2^n+t\cdot 5^n\text{.} \end{equation*}

    We try to fix \(s\) and \(t\) such that \(W_0=a_0\) and \(W_1=a_1\text{.}\) We get that

    \begin{align*} \amp W_0=a_0=0,\\ \amp W_1=a_1=2\text{.} \end{align*}

    Therefore

    \begin{align*} s+t\amp =0,\\ 2s+5t\amp =2\text{.} \end{align*}

    The solution of the above system of equations is \(s=-2/3, t=2/3\text{.}\) Hence

    \begin{equation*} a_n=W_n=-\frac{2}{3}\cdot 2^n+\frac{2}{3}\cdot 5^n\text{.} \end{equation*}
  3. Exercise 5.2.6 Let \(g_n\) be a geometric progression satisfying the same recurrence relation as \(a_n\) such that \(g_n=g_0r^n\) for some \(g_0\) and \(r\text{.}\) We have that

    \begin{equation*} r^2=4r-3\Rightarrow r^2-4r+3=0\text{.} \end{equation*}

    That is, \(r\in\halmaz{1,3}\text{.}\) The linear combination we consider now is

    \begin{equation*} W_n=s\cdot 1^n+t\cdot 3^n=s+t\cdot 3^n\text{.} \end{equation*}

    The additional conditions imply that

    \begin{align*} \amp W_0=a_0=1,\\ \amp W_1=a_1=13\text{.} \end{align*}

    Therefore

    \begin{align*} s+t\amp =1,\\ s+3t\amp =13\text{.} \end{align*}

    We get the solution \(s=-5,t=6\text{.}\) The explicit formula for \(a_n\) is

    \begin{equation*} -5+6\cdot 3^n\text{.} \end{equation*}
  4. Exercise 5.2.7 This is an example of an order 3 linear recurrence. We define \(g_n=g_0r^n\) for some \(g_0\) and \(r\text{,}\) which is a geometric progression. We assume that it satisfies the same recurrence relation as \(a_n\text{,}\) that is, we obtain

    \begin{equation*} r^3=-2r^2+r+2\text{.} \end{equation*}

    It is a cubic polynomial. We look for integer solutions. If there is an integral root, then it divides 2. Hence the possible integral roots are \(\pm 2,\pm 1\text{.}\)

    \(r\) \(r^3+2r^2-r-2\)
    -2 0
    -1 0
    1 0
    2 12
    The cubic polynomial \(r^3+2r^2-r-2\) can be written as \(\left(x-1\right) \cdot \left(x+1\right) \cdot \left(x+2\right)\text{,}\) that is, there are three integral roots. In this case we have three geometric progressions satisfying the recurrence, therefore the appropriate linear combination is

    \begin{equation*} W_n=s\cdot (-2)^n+t\cdot (-1)^n+u\cdot 1^n\text{.} \end{equation*}

    The corresponding system of linear equations is

    \begin{align*} s+t+u\amp =0,\\ -2s-t+u\amp =1,\\ 4s+t+u\amp =2\text{.} \end{align*}

    We subtract the first equation from the third one to get \(3s=2\text{.}\) So we have that \(s=2/3\text{.}\) We eliminate \(s\) from the first two equations

    \begin{align*} t+u\amp =-\frac{2}{3},\\ -t+u\amp =\frac{7}{3}\text{.} \end{align*}

    It is easy to see that \(u=5/6\) and \(t=-3/2\text{.}\) The explicit formula for \(a_n\) is

    \begin{equation*} \frac23 \cdot (-2)^n-\frac32\cdot (-1)^n+\frac56\text{.} \end{equation*}
  5. Exercise 5.2.8 The solution is similar to the previous one, so we only provide some details of the computation. The cubic polynomial in this case is

    \begin{equation*} r^3-6r^2+11r-6\text{.} \end{equation*}

    \(r\) \(r^3-6r^2+11r-6\)
    \(-6\) \(-504\)
    \(-3\) \(-120\)
    \(-2\) \(-60\)
    \(-1\) \(-24\)
    \(1\) \(0\)
    \(2\) \(0\)
    \(3\) \(0\)
    \(6\) \(60\)
    The three roots of the equation are 1, 2 and 3. Let \(W_n=s\cdot 1^n+t\cdot 2^n+u\cdot 3^n\text{.}\) The initial values should be equal as well, hence

    \begin{align*} s+t+u\amp =0,\\ s+2t+3u\amp =0,\\ s+4t+9u\amp =1\text{.} \end{align*}

    It is easy to eliminate \(s\) from the second and the third equation

    \begin{align*} t+2u\amp =0,\\ 3t+8u\amp =1\text{.} \end{align*}

    Therefore \(u=1/2, t=-1\) and \(s=1/2\text{.}\) We obtain the following explicit formula

    \begin{equation*} a_n=\frac{1}{2}-2^n+\frac{1}{2}\cdot 3^n\text{.} \end{equation*}
  6. Exercise 5.2.9 In this exercise we have an order 2 recurrence sequence. Following the method we described we get a quadratic polynomial

    \begin{equation*} r^2-4r+4=(r-2)^2\text{.} \end{equation*}

    It has only a multiple root, so we have to consider the linear combinations of \(2^n\) and \(n\cdot 2^n\text{.}\) That is,

    \begin{equation*} W_n=s\cdot 2^n+tn\cdot 2^n\text{.} \end{equation*}

    The initial values of \(a_n\) are \(a_0=-1\) and \(a_1=0\text{,}\) hence the system of linear equations is

    \begin{align*} s\amp =-1,\\ 2s+2t\amp =0\text{.} \end{align*}

    It is clear that \(s=-1\) and \(t=1\text{.}\) Thus the closed-form formula for \(a_n\) is

    \begin{equation*} -2^n+n\cdot 2^n\text{.} \end{equation*}
  7. Exercise 5.2.10 As before we reduce the problem to a polynomial equation, which is

    \begin{equation*} r^3-5r^2+3r+9\text{.} \end{equation*}

    There are 6 possible integral roots, the divisors of 9, that is, \(\halmaz{\pm 9,\pm 3,\pm 1}\text{.}\)

    \(r\) \(r^3-5r^2+3r+9\)
    \(-9\) \(-1152\)
    \(-3\) \(-72\)
    \(-1\) \(0\)
    \(1\) \(8\)
    \(3\) \(0\)
    \(9\) \(360\)
    We obtained only 2 roots of the cubic polynomial. Dividing the polynomial \(r^3-5r^2+3r+9\) by \((r+1)\cdot (r-3)\) we get \(r-3\) and the remainder is 0. That means that

    \begin{equation*} r^3-5r^2+3r+9=(r+1)\cdot (r-3)^2\text{.} \end{equation*}

    There is a double root, so \(W_n\) is defined as

    \begin{equation*} s\cdot (-1)^n+t\cdot 3^n+un\cdot 3^n\text{.} \end{equation*}

    Substituting \(n=0,1,2\) yields

    \begin{align*} s+t\amp =3,\\ -s+3t+3u\amp =4,\\ s+9t+18u\amp =29\text{.} \end{align*}

    Using that \(s=3-t\) we obtain

    \begin{align*} 4t+3u\amp =7,\\ 8t+18u\amp =26\text{.} \end{align*}

    So we have the solution \(s=2,t=1\) and \(u=1\text{.}\) The explicit formula for \(a_n\) is given by

    \begin{equation*} 2\cdot (-1)^n+3^n+n\cdot 3^n\text{.} \end{equation*}
  8. Exercise 5.2.11 Consider the sequence

    \begin{equation*} u_n=\left(\frac{5-3\sqrt{5}}{2}\right)^n+\left(\frac{5+3\sqrt{5}}{2}\right)^n, n\geq 0\text{.} \end{equation*}

    We have \(u_0=2\) and \(u_1=5\text{.}\) We try to find a second order linear recurrence satisfied by \(u_n\text{.}\) If there is such a recurrence, then the corresponding quadratic polynomial is

    \begin{equation*} \left(r-\frac{5-3\sqrt{5}}{2}\right)\cdot \left(r-\frac{5+3\sqrt{5}}{2}\right)=r^2-5r-5\text{.} \end{equation*}

    Therefore the possible recurrence relation is

    \begin{equation*} u_n=5u_{n-1}+5u_{n-2}=5\cdot (u_{n-1}+u_{n-2})\text{.} \end{equation*}

    Now we have that \(u_n\) is an integer for all \(n\) and \(u_n\) is a multiple of 5 if \(n\geq 1\text{.}\)

  9. Exercise 5.2.12 We have a sequence

    \begin{equation*} u_n=(4-\sqrt{3})^n+(4+\sqrt{3})^n, n\geq 0\text{.} \end{equation*}

    One computes that \(u_0=2\) and \(u_1=8\text{,}\) that is, the first two elements of the sequence is divisible by 2. The quadratic polynomial

    \begin{equation*} \left(r-4+\sqrt{2}\right)\cdot \left(r-4-\sqrt{2}\right)=r^2-8r+14 \end{equation*}

    is the polynomial corresponding to the appropriate recurrence relation. Hence the recurrence sequence is given by

    \begin{align*} u_0\amp =2,\\ u_1\amp =8,\\ u_n\amp =8u_{n-1}-14u_{n-2} n\geq 2\text{.} \end{align*}

    The statement follows easily since \(u_0=2\cdot 1, u_1=2\cdot 4\) and \(u_n=2\cdot(4u_{n-1}-7u_{n-2})\text{.}\)